MCPServers
QDrant RagDocs - MCP server logo

QDrant RagDocs

6
0

Summary

This RagDocs MCP server provides Retrieval-Augmented Generation capabilities using Qdrant vector database and Ollama/OpenAI embeddings. Built with TypeScript, it offers semantic search and management of documentation through vector similarity. The server implements automatic text chunking, embedding generation, and supports both local and cloud-based Qdrant setups. Key features include adding documents with metadata, semantic search, listing/organizing documents, and deletion. By abstracting vector storage and embedding complexities, it enables easy integration of RAG functionality into AI workflows. This implementation is particularly useful for applications requiring context-aware document retrieval, knowledge management systems, and AI-powered documentation tools.

Available Actions(4)

add_document

Add a document to the RAG system. Parameters: url (required), content (required), metadata (optional)

search_documents

Search through stored documents using semantic similarity. Parameters: query (required), options (optional)

list_documents

List all stored documents with pagination and grouping options. Parameters: page (optional), pageSize (optional), groupByDomain (optional), sortBy (optional), sortOrder (optional)

delete_document

Delete a document from the RAG system. Parameters: url (required)

Last Updated: April 17, 2025

社区评论

0.0
0 条评论
5
0
4
0
3
0
2
0
1
0

暂无评论. 成为第一个评论的人!

登录以参与讨论

Coming soon to
HighlightHighlight AI

语言

TypeScript

分类

标签